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Abstract

Following a previous study for a slender enclosure �AR � 4), direct numerical two-dimensional simulations were
conducted for the free convective ¯ow of a low-Prandtl number ¯uid �Pr � 0:0321� with internal heat generation in
a square cavity having adiabatic top and bottom walls and isothermal side walls. The Grashof number, Gr, based
on conductive maximum temperature and cavity width, ranged from 105 to 109. For Gr up to 0107, the ¯ow was

steady and exhibited left±right symmetry. For Gr13� 107, the spatial symmetry was broken and asymmetric
steady-state ¯ow patterns were obtained. For Gr15� 107, the asymmetric ¯ow became time-periodic. Finally, for
Grr108, chaotic ¯ow was predicted; the time-averaged velocity and temperature ®elds were still markedly

asymmetric at Gr � 108, but reattained bilateral symmetry at higher Gr (109), when developed two-dimensional
turbulence was observed. For Grashof numbers above0106, the friction coe�cient averaged along the vertical walls
scaled roughly with Grÿ1=3 (as in the AR � 4 cavity), while the Nusselt number (overall/conductive heat transfer)

increased roughly as Gr1=7, i.e. slightly less markedly than in the slender cavity. 7 2001 Elsevier Science Ltd. All
rights reserved.

1. Introduction and previous work

As discussed in Ref. [1], studies of free convection in
enclosures with internal heat generation have been con-

ducted for some considerable time in connection with

geophysical [2] or nuclear [3] applications, and have

usually focussed on shallow cavities and large Prandtl
numbers. More recently, the problem of free convec-

tion with volumetric heat sources has represented itself

in connection with advanced engineering applications,

such as water-cooled lithium±lead breeder blankets for
nuclear fusion reactors [4] and liquid metal sources of
spallation neutrons for subcritical ®ssion systems [5].

In these applications, the Prandtl number is usually
small (liquid metals) and additional e�ects, such as
magnetohydrodynamic interactions, may play a role.
In a previous paper [1], direct numerical two-dimen-

sional simulations were reported for the natural con-
vection ¯ow in a volumetrically heated slender
rectangular enclosure ®lled with a low-Prandtl number

¯uid �Pr � 0:0321). The enclosure had isothermal side
walls and adiabatic top/bottom walls. The aspect ratio
Ar was 4 and the Grashof number Gr, based on con-

ductive maximum temperature and cavity width, ran-
ged from 3:79� 104 to 1:26� 109:
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According to the value of Gr, di�erent ¯ow

regimes were obtained: steady-state, periodic, and

chaotic. Steady-state ¯ow, exhibiting bilateral (left±

right) symmetry, was predicted for Grashof numbers

up to 02� 105. The ®rst instability of the steady-state

solution occurred at Gr13� 105 in agreement with

the linear stability analysis conducted by Gershuni and

co-workers for the limiting case of an in®nitely slender

cavity [6]. It was associated with the growth of an anti-

symmetric velocity disturbance propagating down-

wards as a travelling wave with a dimensionless wave

number of 01 and a dimensionless propagation speed

of 00.2 (see Section 3 for the scales used). The result-

ing time-periodic ¯ow ®eld consisted of a central rising

plume and of convection rolls, periodically generated

in the upper corners of the cavity and descending regu-

larly along the vertical isothermal walls. Transition

from periodic to chaotic motion occurred at

Gr11� 106; up to the highest Grashof numbers stu-

died, the ¯uid motion exhibited a recognisable domi-

nating frequency, associated with the process of roll

renewal and scaling as Gr1=2: The ¯ow ®eld still con-

sisted of a meandering rising plume and of descending

convection rolls, but these coherent structures were

now irregular in shape, size and velocity.

For Grashof numbers larger than 0106 (chaotic

¯ow), the friction coe�cient averaged along the verti-

cal walls was found to scale as Grÿ1=3 and the Nusselt

number (overall/conductive heat transfer) as Gr1=6:

In the present paper, a corresponding study is

described for the case of a square enclosure �AR � 1�
with the same thermal boundary conditions and for a
comparable range of Grashof numbers (105±109). The

computational domain and the relevant nomenclature
are shown in Fig. 1. The case of a shallow enclosure
�AR � 0:25� will be considered in a companion paper.

Nomenclature

AR cavity aspect ratio, height/width
Cf friction coe�cient
D cavity width (m)

F frequency (sÿ1)
F0 reference frequency, 1=t0 (sÿ1)
f dimensionless frequency, F=F0

g acceleration due to gravity (m sÿ2)
Gr Grashof number, gbqD5=�kn 2� � Ra=Pr (±)
k thermal conductivity (W mÿ1 Kÿ1)
Nu1 ®rst Nusselt number, 1=Tmax

Nu2 second Nusselt number, (2/3)/hTi
P pressure (N mÿ2)
p dimensionless pressure, P=�rU 2

0 �
Pr Prandtl number, n=a
q power density (W mÿ3)
q0 heat ¯ux (W mÿ2)
Ra Rayleigh number, gbqD5Pr=�kn 2�
t dimensionless time, t=t0
T dimensionless temperature, �Wÿ Ww�=Wc

U, V velocity components (m sÿ1)
U0 velocity scale, D=t0 (m sÿ1)

u, v dimensionless velocities, U=U0 and V=U0

X, Y co-ordinates (m)
x, y dimensionless co-ordinates, X/D and Y/D

Greek symbols
a thermal di�usivity (m2 sÿ1)
b thermal expansion coe�cient (Kÿ1)
W temperature (K)
Wc conductive temperature scale, �qD 2�=�8k� (K)

n kinematic viscosity (m2 sÿ1)
r density (kg mÿ3)
t time (s)
t0 convective time scale, 4p�2=Gr�1=2�D 2=n� (s)
tM momentum di�usive time scale, D 2=n (s)
C dimensionless stream function

Subscripts
c conductive
P periodic

w wall
0 reference

Fig. 1. Sketch of the model square cavity with isothermal ver-

tical walls and adiabatic horizontal walls. The location of

monitoring points P1±P5 is indicated.
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2. Literature review

In contrast with the rich literature on the numerical
computation of unsteady ¯ows in di�erentially heated
enclosures, published results for free convection in

enclosures with internal heat generation are relatively
scarce and most of them regard Prandtl numbers larger
than unity; a review was given in Ref. [1].

Of particular interest here are previous compu-
tational studies dealing with square cavities. For this
geometry, Churbanov et al. [7] solved the two-dimen-

sional Navier±Stokes equations (recast in c±o form)
for Rayleigh numbers of 105±108 and Pr � 7: They
tested alternative thermal boundary conditions (not
including, however, those used in the present work)

and obtained symmetry-breaking and time-periodic
unsteady solutions. Periodic solutions were also com-
puted by May [8] at Ra > 3:2� 106 for a square cavity

at Pr � 7 with all walls isothermal.
Turbulence models, rather than direct (albeit two-

dimensional) simulations, were used by other authors.

Farouk [9], using the k±e model, obtained symmetry-
breaking solutions for a cavity of AR � 0:5 at Pr � 6:5
and Ra � 2� 106±2� 109: Though a time-marching

approach was used to compute the initial transient, the
¯ow settled to a steady state and time dependence was
not explicitly simulated due to the use of a turbulence
model. Alternative turbulence models were tested and

developed by Dinh and co-workers [10] with appli-
cations to corium cooling problems, but for hemi-
spherical geometries quite far from the square one

considered here.
Acharya and Goldstein [11] considered a square box

arbitrarily oriented with respect to the horizontal and

subjected to simultaneous internal heat generation and
di�erential heating of two opposite walls. The Prandtl
number was 0.7. They used a rather coarse grid (32 �
32 nodes) and conducted only steady-state simulations.

Mixed (internal + external) heating was also simulated
by Fusegi et al. [12] using a time-marching ®nite
volume method on much ®ner grids (122� 122 nodes).

For the case of internal heating only and Pr � 5:85,
they obtained steady-state and bilaterally symmetric
solutions up to Rayleigh numbers of 01010

�Gr12� 109).

3. Model and numerical methods

As indicated in Section 1, the physical model

adopted in the present study consists of a square cavity
of height and width D. Fig. 1 reports the location of
®ve monitoring points which will be used in the follow-

ing. The ¯uid motion is driven by a uniform internal
power density q, the left and right walls being at con-
stant temperature, Ww and the upper and lower bound-

aries at zero heat ¯ux. The ¯uid considered here has a
Prandtl number of 0.0321, which corresponds to a

liquid metal Li±17Pb alloy at 3008C.
In order to write the governing equations in dimen-

sionless form, appropriate scales were chosen for

length, temperature, time, velocity and pressure follow-
ing the approach in Ref. [1]. The length scale is the
size D of the enclosure. The temperature scale is the

conductive peak temperature Wc � qD 2=�8k�: As
regards the frequency or time scales, by analogy with
the Brunt±VaÈ isaÈ laÈ frequency FBV��gbj@W=@Yj�1=2=�2p�
which characterises stably strati®ed ¯ows [13], the
reference frequency F0 � �gbWc=D�1=2=�2p� was used.
The corresponding time scale is t0 � Fÿ10 , which may
be written as t0 � �4p

���
2
p

Grÿ1=2�tM, tM � D 2=n being

the momentum di�usive time scale and Gr �
gbqD5=�kn 2� � Ra=Pr the Grashof number. A velocity
scale coherent with the above de®nitions is U0 � D=t0,
i.e. the ratio of length to time scales. Finally, an
appropriate pressure scale is rU 2

0 : As con®rmed a pos-
teriori by the computational results, the above choice

of scales allowed all variables to remain of order one
throughout the range of parameters investigated.
The two-dimensional continuity and momentum

equations, coupled with the energy transport equation
under the Boussinesq approximation, may now be
written in dimensionless form as:
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in which x � X=D, y � Y=D, u � U=U0, v � V=U0,

p � P=�rU 2
0 �, T � �Wÿ Ww�=Wc, t � t=t0: The boundary

conditions are:

u � v � 0, @T=@y � 0 for y �21=2 �4�

u � v � 0, T � 0 for x �21=2 �5�

The range of Grashof numbers investigated was from
105 to 109. For Gr < 105, convection plays a negligible
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role, while for Gr > 109, the explicit resolution of all
energy containing spatial and temporal features of the

¯ow would require prohibitive computational grids
and computing times.
Eqs. (1)±(3) were solved by using a ®nite-volume

technique based on the SIMPLEC pressure±velocity
coupling algorithm [14], Crank±Nicholson time step-
ping and the central discretisation scheme for both dif-

fusion and advection terms. Details are discussed in
Ref. [1].
As will be discussed in the following sections,

according to the Grashof number, the ¯ow either
attained a steady-state con®guration or exhibited per-
iodic or chaotic unsteadiness. In the former case
�GrR3� 107), the simulation was protracted until no

signi®cant variation of monitored quantities was
observed. This typically required 5±25 time constants
t0 (de®ned above), the larger time being necessary for

the case Gr � 3� 107 which exhibited spatial symmetry
breaking.
In the cases with time-dependent behaviour, the ¯ow

exhibited recognisable lowest frequencies ranging from
02:4=t0 (periodic ¯ow obtained at Gr � 5:4� 107� to
00:3=t0 (chaotic ¯ow at Gr � 108). Simulations were

protracted in each case so as to include many corre-
sponding periods, i.e. for a dimensionless time of 05±
15. One time unit t0 was typically resolved by 400 time
steps.

Computational grids ranged from 80 � 80 nodes
�Gr < 108� to 128� 128 nodes �Gr � 108 and 109), and
were selectively re®ned near the walls by using a hyper-

bolic tangent distribution. Grid-independence tests
were conducted for the case Gr � 108 and no signi®-
cant di�erence in time-averaged quantities and var-

iances was observed as the grid size increased from 64
� 64 to 128 � 128. A more detailed discussion of the
grid and time-step requirements for similar simulations
was given in Ref. [1].

4. Results: steady-state ¯ow

For GrR107, the ¯ow settles to a steady-state sol-

ution possessing bilateral symmetry. The initial rate of
temperature rise in the cavity is the same at all points,
and is given Ð in dimensionless terms Ð by
@T=@ t � �32p ���

2
p �=�Pr ������

Gr
p �, as can be deduced from

Eq. (3) for initially negligible convection and di�usion.
Therefore, in the dimensionless form used here, the in-
itial temperature slope decreases as Gr increases. At

steady state, maximum temperatures are largest for the
case Gr � 106, for which the conductive peak value is
exceeded by 08%. On the other hand, volume-aver-

aged temperatures decrease monotonically with Gr; at
Gr � 107, they are 028% lower than the purely con-
ductive value (which is 2/3 in dimensionless form),

while at the lowest Gr (105), they are barely dis-
tinguishable from the conductive value, which indicates
that convection contributes little to heat transport at

Fig. 2. Steady-state or time-averaged ¯ow and temperature

®elds. Left: streamlines, dimensionless separation = 0.1 (solid

lines: clockwise ¯ow; broken lines: anti-clockwise ¯ow). Right:

isotherms, dimensionless separation = 0.05. (a) Gr � 105; (b)

Gr � 107; (c) Gr � 3� 107; (d) Gr � 5:4� 107; (e) Gr � 108;

(f) Gr � 109:
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such a low Gr, at least for the present Prandtl number

(0.0321).
Steady-state dimensionless stream function C and

temperature T are shown in Fig. 2a and b for Gr �
105 and 107. The stream function is made dimension-

less with respect to DU0 � D 2=t0: Results are qualitat-
ively similar to those previously obtained for a slender

cavity of AR � 4 [1]; there is only one circulation cell
in each half of the enclosure, with a perfect bilateral
symmetry. The case at the lowest Gr (105) also exhibits

roughly top±bottom symmetry in C and mainly hori-
zontal strati®cation in T, due to the dominant role

played by conduction. At higher Gr, the role of con-
vection increases and a moderate vertical thermal stra-

ti®cation develops, especially in the upper region of the
enclosure.

For a Grashof number of 3� 107, a markedly di�er-
ent behaviour was predicted. Fig. 3 reports dimension-

less velocities as functions of time at the monitoring
points P1±P2 and P3±P5 (symmetrically located with

respect to the vertical centreline). After t15, the ¯ow
tends to a symmetric steady state. However, full con-

vergence to this con®guration is never attained, and
for t110, quantities related to spatially symmetric

points begin to diverge until, at t120, an asymmetric
steady state is attained. The evolution of the ¯ow ®eld
from the initial state of still ¯uid to the ®nal asym-

metric con®guration, through intermediate symmetric
states, is better shown in Fig. 4 in the form of vector

plots of the instantaneous velocity at regular intervals
of02.8 (in t0 units).

The ®nal, steady-state, stream function and tempera-

ture distributions are shown for this case in Fig. 2(c).
The temperature ®eld, as compared with that com-

puted for the last symmetric case at Gr � 107

(Fig. 2(b)) exhibits only a slight reduction of the maxi-
mum value (from 00.7 to 00.6 in dimensionless

terms), but shows a signi®cant asymmetric distortion
of the whole distribution.
The transition from symmetric to asymmetric steady

states indicates the existence of a pitchfork bifurcation,
with spatial symmetry breaking, at some intermediate
value of Gr between 107 and 3 � 107. A similar sym-

metry breaking was predicted by Churbanov et al. [7]
for a square box at Pr � 7 and Gr1107, and by Far-
ouk [11] for AR � 0:5, Pr � 6:5, Gr1107, but not by
Fusegi [10] for AR � 1, Pr � 5:85 and Grashof num-

bers up to0109.

5. Results: periodic ¯ow

For a Grashof number of 5.4 � 107 (midway
between 3 � 107 and 108 in a logarithmic scale), a per-
fectly time-periodic solution was predicted. Fig. 5

reports the time-dependent behaviour of vertical vel-
ocities v at the monitoring points P1±P2 and P3±P5
(symmetric with respect to the vertical centreline).
Following an initial transient Ð quite similar to

that observed for the symmetric steady-state case
Gr � 107 Ð at t115, ¯uctuations start to develop in
all quantities and result in regular periodic oscillations

at t125: Since periodic oscillations develop further to
the spatial symmetry breaking (which occurs at t110),

Fig. 3. Predictions for the case Gr � 3� 107, attaining an asymmetric steady-state condition: dimensionless vertical velocity v at

monitoring points P1±P2 and P3±P5, symmetrically located with respect to the centreline x � 0:
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they are superimposed on a base ¯ow which is already

spatially asymmetric with respect to the cavity vertical

centreline.

Instantaneous vector plots during the initial transi-

ent, up to the onset of periodic oscillations, show sym-
metry breaking like Fig. 4 and are not reported here.

After periodicity has been attained, the period of the

oscillation is 00.42 �t0 units), corresponding to a

dimensionless frequency of 02.4. The behaviour of the

¯ow ®eld, as indicated by vector plot animations of

the ¯uctuating velocity, can be interpreted as due to

the passage of an anti-symmetric velocity disturbance
which moves upward as a travelling wave with vertical

wavelength 02/3 and propagation speed 01.6 (in the

present dimensionless form), so as to yield a dimen-

sionless frequency of 02.4. Further complexities are

Fig. 4. Evolution of the ¯ow ®eld to the ®nal asymmetric steady state for Gr � 3� 107: Frames 2±9 are at regular intervals of 2.8

t0 units.
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introduced by the presence of the horizontal walls and
by the anti-symmetric nature of the base steady-state

¯ow. In the overall (mean + ¯uctuating) ¯ow, the per-
iodic time dependence is barely observable due to the
small amplitude of the oscillations, and appears as a

cyclic motion of the roll centres around small, roughly
elliptic, orbits.
Power spectra of the dimensionless vertical velocity v

and temperature T at any monitoring point, computed
from the sequences in Fig. 5 using data in the interval
t � 25±30 (which covers roughly 12 periods), show a

sharp peak at f12:4; the only other signi®cant peak
corresponds to the ®rst harmonic of the above periodic
frequency �f14:8).
Time-averaged distributions of the dimensionless

stream function and temperature for the present per-
iodic case at Gr � 5:4� 107 are reported in Fig. 2(d).
The asymmetry of the time-averaged ¯ow and tem-

perature ®elds can be observed; the maximum dimen-
sionless temperature is00.55.

6. Results: chaotic ¯ow

The periodic ¯ow in the present cavity exists only in
a narrow range of Grashof number, as was the case
for the slender cavity of aspect ratio 4 [1]. For
Gr � 108, perfect time periodicity is already lost and

irregular ¯uctuations begin to appear in the ¯ow and
temperature ®eld.
Fig. 6 reports the dimensionless vertical velocity v at

the monitoring points P1 and P2 as a function of time,
and can be compared with Fig. 5 (relative to the peri-

odic ¯ow at Gr � 5:4� 107). In the present case,
spatial symmetry breaking occurs at a comparable
dimensionless time �t113), but is accompanied without

any signi®cant delay by the growth of irregular oscil-
lations.
A normalised power spectrum is reported in Fig. 7(a)

for the vertical velocity v at monitoring point 1. It was
obtained by processing the corresponding time series
between t � 27 and t � 42 �t0 units). The subharmonic

frequency f10:27 is clearly visible, and its amplitude
even exceeds that associated with the pseudo-periodic
frequency fP: The spectrum exhibits, quite close to the
pseudo-periodic frequency fP12, a lower frequency of

01.7. The highest value of f still associated with a sig-
ni®cant energy content is 04. Although other frequen-
cies are present, it can be stated that the ¯ow is

characterised by just three main unrelated frequencies
(0.27, 1.7, and 2), suggesting that the present Grashof
number of 108 is close to a quasi-periodic condition

and is probably just beyond the critical value for tran-
sition to proper chaotic behaviour. The existence of in-
termediate quasi-periodic regimes is di�cult to

ascertain merely by numerical simulations, but could
be the subject of future analysis.
Time-averaged distributions of the dimensionless

stream function and temperature for Gr � 108 are

reported in Fig. 2(e). The asymmetry of both the ¯ow
and the temperature ®elds can be observed; results,
apart from the opposite parity, are similar to those

Fig. 5. Predictions for the periodic case Gr � 5:4� 107: dimensionless vertical velocity v at monitoring points P1±P2 and P3±P5,

symmetrically located with respect to the centreline x � 0:
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reported in Fig. 2(d) for the periodic case Gr �
5:4� 107: The maximum dimensionless temperature is

slightly lower (00.5).

The further increase of the Grashof number to 109

leads to a fully chaotic behaviour, in which the left±
right asymmetry observed for the previous cases is lost

and time averages exhibit an almost perfect bilateral

symmetry. The time evolution of the dimensionless vel-

ocity v at monitoring points P1 and P2 is shown in
Fig. 8 for an overall duration of 035 t0 units. The

highly irregular behaviour of all quantities, and the

disappearance of any marked asymmetry between the

left and right halves of the enclosure in the long-term
behaviour of the ¯ow, can be observed. Quantities

relative to spatially symmetric points initially exhibit

identical, though apparently chaotic, oscillations, and

begin to diverge at a dimensionless time of 010, close
to that observed for the previous asymmetric ¯ows at

3� 107RGrR108: However, in the present case, large

irregular oscillations develop simultaneously and pre-

vent the ¯ow from settling to an asymmetric base pat-
tern.

A normalised power spectrum (derived from the
interval t � 20±35� is shown in Fig. 7(b) for the verti-

cal velocity v at the monitoring point P1. The domi-

nant frequency is fP10:8 and is associated with the

most conspicuous ¯uctuations of the vertical velocity v
in Fig. 8; it corresponds to the pseudo-periodic fre-

quency of 02 observed for the previous case at

Gr � 108, Fig. 7(a), and to that of 02.4 observed for

the periodic case at Gr � 5:4� 107:

The symmetric nature of the time-averaged ¯ow and
temperature distributions is evidenced in Fig. 2(f). The

signi®cant reduction of the dimensionless temperature
maximum from 0.5 to 0.35 as Gr increases by an order
of magnitude can be observed. Streamlines show that

time-mean circulation centres are now located close to
the bottom of the cavity.

7. Shear stress and heat transfer

Fig. 9(a) reports time-averaged pro®les of the wall
shear stress along the side walls for all the cases stu-

died. The wall shear stress was further averaged
between the left and right walls and normalised by
rU 2

0 , thus taking the form of a friction coe�cient Cf :
All curves exhibit a peak near the cavity top, where
the horizontal boundary layers turn and meet the cold
walls. Top±down asymmetry is low for the case at low-
est Gr (105), when the role of convection is marginal

and also the ¯ow ®eld is roughly top±down symmetric.
Maximum local values of Cf (03), and the largest top±
down asymmetry, are attained for the following case

Gr � 106, while peaks of Cf decrease, and its pro®le
become more uniform, as Gr increases further. Cf is
low (00.2) and rather uniform along the walls for the

fully chaotic case Gr � 109:
Separate pro®les of Cf along the left and right walls

are reported in Fig. 9(b) for the asymmetric cases Gr �
3� 107 (steady state), 5.4 � 107 (periodic), and 108

(chaotic) in order to evidence the degree of asymmetry

Fig. 6. Predictions for the early chaotic case Gr � 108: dimensionless vertical velocity v at monitoring points P1±P2, symmetrically

located with respect to the centreline x � 0:
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in the wall friction coe�cient associated with the asym-
metry of the bulk ¯ow.

Fig. 10 reports hCfi, i.e. the spatially averaged value
of Cf , as a function of Gr over the whole range stu-
died. At the lowest values of the Grashof number

(105), the computed value of hCfi approaches a limiting
value of 01.7, which is signi®cantly lower than the
value 4p 2=1512:63 deduced analytically in Ref. [1] for

the case of parallel ¯ow in an in®nitely slender enclo-
sure. However, it can be observed from Fig. 9(a) that

the maximum of Cf (shifted upwards with respect to
mid-height) is quite close to the above value, while the

regions near the horizontal walls lower the average
substantially. At higher Gr, hCfi decreases roughly as
Grÿ1=3, as in the case AR � 4 [1]. Note that as a conse-

quence, the dimensional wall shear stress increases as
U4=3

0 , thus exhibiting a behaviour intermediate between
that of a viscous and that of a hydraulic resistance.

Also note that the transition from steady to unsteady
¯ow at Gr13� 107 is associated with a slight increase

Fig. 7. Normalised power spectrum of the vertical velocity v at monitoring point P1.(a) Gr � 108 (early chaotic ¯ow); (b) Gr � 109

(fully chaotic ¯ow).
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of hCfi, while its (ÿ1/3) power-law dependence upon

Gr remains basically unchanged.
As regards heat transfer, for the present con®gur-

ation the mean value of the wall heat ¯ux under ther-

mal equilibrium conditions is qD=2; this value can be
used to normalise the local and/or instantaneous
values of the wall heat ¯ux q 00:
Fig. 11(a) reports the wall heat ¯ux pro®les for all

the cases studied; for the time-dependent cases, all
curves represent long-term time averages and were

further averaged between the left and right walls to
cancel the e�ect of the ¯ow asymmetry (if present). At
low Gr (105 and, partly, 106), the curves are quite ¯at,

with small variations with respect to their mean value.
On the other hand, large variations are present for

higher Grashof numbers, especially in the chaotic
range. Peak values of 01.6±1.7 are obtained in corre-
spondence with the impingement of hot ¯uid on the

cold walls near the cavity top, while lowest values cor-
respond to the separation of the wall boundary layers
near the cavity bottom. For the present aspect ratio of

1, the central region of the cavity does not exhibit a
¯at distribution of q 00 as occurred in a slender enclo-
sure of AR � 4 [1].

Separate pro®les of the normalised heat ¯ux along
the left and right walls are reported in Fig. 11(b) for
the asymmetric cases Gr � 3� 107 (steady state), 5.4�
107 (periodic), and 108 (chaotic) in order to evidence
the e�ect of the ¯ow asymmetry on wall heat transfer.

Finally, the in¯uence of Gr on overall heat transfer
is shown in Fig. 12. This reports the quantities Nu1 �
1=Tmax �Tmax being the time-averaged maximum tem-

perature in the cavity) and Nu2 � �2=3�=hTi �hTi being
the time- and space-averaged temperature). This latter
de®nition is such that it gives Nu2 � 1 for a purely
conductive temperature distribution. Both quantities

can be regarded as alternative de®nitions of the Nus-
selt number (ratio of overall to conductive heat trans-
fer) for the present con®guration. They are plotted as

functions of the Grashof number, showing results from
all the cases examined.
It is interesting to observe that for Grashof numbers

below 107 (corresponding to steady-state, symmetric
¯ow), convection actually results in an increase of the
temperature maximum �Nu1 < 1� by transporting hot

¯uid into the hottest region of the enclosure (adjacent
to the top adiabatic wall). A similar result was

obtained for the case of a slender enclosure [1] for Gr
up to 2� 106, and was also observed by de Socio et al.
[15] in correspondence with transitional values of Gr

for internally heated cavities
As expected in liquid metals, Nu1 and Nu2 never

become very high, attaining a common value of about

2.66 at the highest Gr (109). This is similar to the
values obtained for the slender enclosure [1] (02.4±2.7
for Nu1 and Nu2, respectively) at the slightly higher Gr

of 1.26 � 109, which shows that the Nusselt number
scales well with the Grashof number based on the cav-

ity width rather than on its height. Note that in the
present case of a square enclosure, strong vertical mix-
ing suppresses any signi®cant vertical thermal strati®-

cation and causes the above two de®nitions of the
Nusselt number, practically, to coincide at Grr3� 107

(unsteady ¯ow). On the contrary, for AR � 4, Nu1 and

Fig. 8. Predictions for the fully chaotic case Gr � 109: dimensionless vertical velocity v at monitoring points P1±P2, symmetrically

located with respect to the centreline x � 0:
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Nu2 were still signi®cantly di�erent at the highest Gr
[1].

For Gr > 0106, both Nu1 and Nu2 increase approxi-
mately as Gr1=7: This behaviour is similar to that com-
puted for the case of a slender enclosure [1] but di�ers

from that �Nu20Gr0:23±0:24� indicated by the exper-

imental results of Fiedler and Wille [16] and Kulacki
and Nagle [17] and by the computational studies of

Farouk [9] and Dinh and Nourgaliev [10], which, how-
ever, refer to shallow layers cooled only from the
upper surface and to a Prandtl number of 6±7. The

lower Grashof number dependence found in the pre-

Fig. 9. Steady-state or time-averaged friction coe�cient. (a) Pro®les of Cf along the vertical walls for the all cases investigated. For

the asymmetric cases, the mean of left and right wall values is shown. (b) Separate pro®les of Cf along left and right walls for the

asymmetric cases.
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sent study is justi®ed by the lower Prandtl number
considered (0.0321).

8. Conclusions

Numerical predictions of the ¯ow and temperature
®elds in an internally heated square enclosure at Pr �
0:0321 and Gr � 105±109 indicate the existence of a
pitchfork bifurcation, with spatial symmetry breaking,
at 107 < Gr < 3� 107; of a Hopf bifurcation to per-
iodic ¯ow at 3� 107 < Gr < 5:4� 107; and of a ®nal

transition to chaotic ¯ow at 5:4� 107 < Gr < 108,
probably passing through an intermediate range of
quasi-periodic ¯ow. The transition from steady to

unsteady ¯ow occurs at a comparable Grashof num-
ber, based on the cavity height, for the slender and the
square enclosures. The mechanisms of transition, how-

ever, appear to be considerably di�erent.
As summarised in Section 1, for the previously stu-

died case of a slender cavity of AR � 4 [1] transition
to time-periodic ¯ow regimes occurred at Gr13� 105

and was associated Ð in agreement with the linear
stability results of Gershuni and co-workers [6] Ð with
the growth of a travelling wave anti-symmetric disturb-

ance of the base ¯ow, propagating downward with a
dimensionless wavelength 01 and a celerity 00.2. In
the present case, the steady but spatially asymmetric

¯ow occurring at Gr1103� 107 can be regarded Ð
at some distance away from the top and bottom walls
Ð as the superposition of a symmetric steady base

¯ow, similar to that computed for the slender cavity,
and of an anti-symmetric steady disturbance (station-
ary-wave) of vertical wavelength 01 (in the present
dimensionless formulation based on D ) and appropri-

ate amplitude. The latter disturbance is similar, apart

from its zero propagation speed, to that responsible
for the Hopf bifurcation in the slender cavity. In its
turn, the time-dependent ¯ow established in the present

case at Gr > 05� 107 can be interpreted as the
further superposition on the above steady asymmetric
¯ow of an anti-symmetric travelling wave disturbance

of comparable vertical wavelength (02/3), but propa-
gating upward with higher speed (01.6). Therefore, the
time-dependent ¯ow occurring in the present con®gur-

ation is due to di�erent mechanisms than that
observed for the slender cavity and is, in fact, charac-
terised by a quite di�erent dimensionless frequency

(02.4 against00.2±0.3).
An open issue is the in¯uence of the Prandtl number

on ¯ow stability and ¯ow patterns. The in®nite-AR lin-
ear stability analysis by Gershuni and co-workers [6]
predicts that as Pr increases, the critical Grashof num-

ber Grc for the onset of periodic convection decreases
while the corresponding critical Rayleigh number
Rac � Grc � Pr increases, but clearly is not applicable

to low aspect ratio enclosures, as the present paper
shows. Numerical results for di�erentially heated
square cavities [18] indicate that a Hopf bifurcation to

time-periodic ¯ow occurs at a critical Rayleigh number
for Pr < 02, while direct transition to chaotic ¯ow
occurs for larger values of Pr; but, again, cannot be

directly extended to the present internally heated con-
®guration. Further computational studies repeated for

di�erent values of the Prandtl number will be necess-
ary in order to clarify this issue.
It should be stressed that directly comparable

results, either experimental or computational, are not
available in the literature for comparison and vali-
dation of the present ®ndings. However, the conditions

Fig. 10. Spatially averaged friction coe�cient h �Cfi as a function of Gr.
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studied in the present paper should not be di�cult to
reproduce in experiments (apart, of course, from three-

dimensional and end-wall e�ects). For example, in a 5
� 5 cm rectangular enclosure ®lled with mercury
�Pr � 0:027, very close to that considered in the pre-

sent study), a Grashof number of 108 corresponds to a
volumetric heat density of 022 kW mÿ3, easily
achieved by Ohmic heating. The detailed measurement

of velocities in liquid metal-®lled, internally heated
enclosures is not practically feasible, but the recording

of temperature time series at selected locations in a
cavity for di�erent Grashof numbers Ð certainly
within reach of available experimental methods Ð

would be su�cient to observe any transition from
steady symmetric to asymmetric, time-periodic and
chaotic regimes. Also the measurement of the local

Fig. 11. Steady-state or time-averaged heat transfer quantities. (a) Pro®les of the wall heat ¯ux q 00 (normalised by its mean value

qD=2� along the vertical walls for all the cases investigated. For the asymmetric cases, the mean of left and right wall values is

shown. (b) Separate pro®les of q 00 along the left and right walls for the asymmetric cases.
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heat ¯ux along the active walls should be experimen-
tally feasible and would contribute to validate the pre-
sent numerical, two-dimensional predictions.
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